56 research outputs found

    Eluição de proteínas de gel de poliacrilamida: descrição de metodologia simples e econômica

    Get PDF
    A simplified methodology for the quantitative electroelution of proteins from polyacrylamide gels is described. After staining with Coomassie Brilliant Blue R 250, the identified bands are excised from the gel and the proteins eluted using a procedure developed for use in conventional tube gel electrophoresis equipment.Descreve-se uma metodologia simplificada para a eletroeluição quantitativa de proteínas de gel de poliacrilamida. Após coloração do gel pelo Coomassie Brilliant Blue R 250, os componentes identificados são recortados e as proteínas eluidas do gel por um procedimento desenvolvido para uso em aparelho de eletroforese vertical em tubos

    Immunoreactivity of brazilian HIV isolates with different V3 motifs

    Get PDF
    California Department of Health Services Viral and Rickettsial Disease LaboratoryInstituto Oswaldo Cruz Departamento de ImmunologiaUniversidade de São Paulo Faculdade de Medicina Laboratório de Immunogenética e Transplante ExperimentalInstituto Adolfo Lutz Serviço de Virologia Laboratório de RetrovirusEscola Paulista de Medicina DIPAFIOCRUZ Centro de Pesquisa Gonçalo Moniz Laboratório Avançado de Saúde PúblicaUNIFESP, EPM, DIPASciEL

    International Network for Comparison of HIV Neutralization Assays: The NeutNet Report II

    Get PDF
    BACKGROUND: Neutralizing antibodies provide markers for vaccine-induced protective immunity in many viral infections. By analogy, HIV-1 neutralizing antibodies induced by immunization may well predict vaccine effectiveness. Assessment of neutralizing antibodies is therefore of primary importance, but is hampered by the fact that we do not know which assay(s) can provide measures of protective immunity. An international collaboration (NeutNet) involving 18 different laboratories previously compared different assays using monoclonal antibodies (mAbs) and soluble CD4 (Phase I study). METHODS: In the present study (Phase II), polyclonal reagents were evaluated by 13 laboratories. Each laboratory evaluated nine plasmas against an 8 virus panel representing different genetic subtypes and phenotypes. TriMab, a mixture of three mAbs, was used as a positive control allowing comparison of the results with Phase I in a total of nine different assays. The assays used either uncloned virus produced in peripheral blood mononuclear cells (PBMCs) (Virus Infectivity Assays, VIA), or Env (gp160)-pseudotyped viruses (pseudoviruses, PSV) produced in HEK293T cells from molecular clones or from uncloned virus. Target cells included PBMC and genetically engineered cell lines in either single- or multiple-cycle infection format. Infection was quantified by using a range of assay read-outs including extra- or intra-cellular p24 antigen detection, luciferase, beta-galactosidase or green fluorescent protein (GFP) reporter gene expression. FINDINGS: Using TriMab, results of Phase I and Phase II were generally in agreement for six of the eight viruses tested and confirmed that the PSV assay is more sensitive than PBMC (p = 0.014). Comparisons with the polyclonal reagents showed that sensitivities were dependent on both virus and plasma. CONCLUSIONS: Here we further demonstrate clear differences in assay sensitivities that were dependent on both the neutralizing reagent and the virus. Consistent with the Phase I study, we recommend parallel use of PSV and VIA for vaccine evaluation

    International Network for Comparison of HIV Neutralization Assays: The NeutNet Report

    Get PDF
    BACKGROUND: Neutralizing antibody assessments play a central role in human immunodeficiency virus type-1 (HIV-1) vaccine development but it is unclear which assay, or combination of assays, will provide reliable measures of correlates of protection. To address this, an international collaboration (NeutNet) involving 18 independent participants was organized to compare different assays. METHODS: Each laboratory evaluated four neutralizing reagents (TriMab, 447-52D, 4E10, sCD4) at a given range of concentrations against a panel of 11 viruses representing a wide range of genetic subtypes and phenotypes. A total of 16 different assays were compared. The assays utilized either uncloned virus produced in peripheral blood mononuclear cells (PBMCs) (virus infectivity assays, VI assays), or their Env-pseudotyped (gp160) derivatives produced in 293T cells (PSV assays) from molecular clones or uncloned virus. Target cells included PBMC and genetically-engineered cell lines in either a single- or multiple-cycle infection format. Infection was quantified by using a range of assay read-outs that included extracellular or intracellular p24 antigen detection, RNA quantification and luciferase and beta-galactosidase reporter gene expression. FINDINGS: PSV assays were generally more sensitive than VI assays, but there were important differences according to the virus and inhibitor used. For example, for TriMab, the mean IC50 was always lower in PSV than in VI assays. However, with 4E10 or sCD4 some viruses were neutralized with a lower IC50 in VI assays than in the PSV assays. Inter-laboratory concordance was slightly better for PSV than for VI assays with some viruses, but for other viruses agreement between laboratories was limited and depended on both the virus and the neutralizing reagent. CONCLUSIONS: The NeutNet project demonstrated clear differences in assay sensitivity that were dependent on both the neutralizing reagent and the virus. No single assay was capable of detecting the entire spectrum of neutralizing activities. Since it is not known which in vitro assay correlates with in vivo protection, a range of neutralization assays is recommended for vaccine evaluation

    Control of Mycoplasma contamination in hybridoma technology

    No full text
    • …
    corecore